2D spectroscopy of coupled electronic-nuclear motion

J. Albert1, M. Fidge2, H. Hildenbrand3, S. Gommer2, J. R. Solé4 and V. Engel1

1 ITPC, University Würzburg, D-97243 Würzburg, Germany 1, 2 Dep. de Química Física, Universidad Complutense, 28040 Madrid, Spain

We theoretically investigate the photon-echo spectroscopy for a model [1] which involves the coupled (c) quantum dynamics of an electron and a nucleus. This model serves to illustrate the limiting cases of an adiabatic and a diabatic motion [2]. In the first case, an interpretation of the two-dimensional (2D) spectra is feasible using the Born-Oppenheimer (BO) approximation is feasible. It is then possible to identify pure vibrational coherences in fixed electronic states. For the case of strong non-adiabatic coupling, i.e., a diabatic motion, the 2D-spectra reveal a complicated structure which is related to the breakdown of the BO-approximation. The spectra are then dominated by vibronic coherences.

Hamiltonian

\[\hat{H} = \frac{1}{2M} \ddot{R}^2 + V(r, R) + \hat{W}(R, r, t) \]

\[W(R, r, t) = -\left(-\xi + R \right) E^2(t) \]

Born-Oppenheimer treatment

\[\hat{H} = \left(\begin{array}{cc} V(r, R) & \hat{W}(R, r, t) \hat{W}^*(R, r, t) \hat{W}(R, r, t) \end{array} \right) \]

\[\hat{T} = \left(\begin{array}{cc} \hat{T}_1 & \hat{T}_2 \end{array} \right) \]

Calculation of 2D spectra

Third-order polarization (\(-\chi_k + k_x + \chi_k \cdot \text{direction} \))

\[p_{P}^{(3)}(t, r) = \sum_{n=1}^{N} \langle \phi^{(m-1)} | | \phi^{(n+1)} \rangle \langle \phi^{(n+1)} | | \phi^{(n)} \rangle \langle \phi^{(n)} | | \phi^{(n-1)} \rangle \langle \phi^{(n-1)} | \rangle \]

\[p_{P}^{(3)}(t, r) = \langle \phi^{(n)} \rangle \langle \phi^{(n-1)} \rangle | \phi^{(n)} \rangle \langle \phi^{(n-1)} \rangle \langle \phi^{(n)} | | \phi^{(n-1)} \rangle \langle \phi^{(n-1)} | \rangle \]

2D spectrum

\[S_\gamma(E_x, E_y) = \int dt \int d\tau e^{-i \omega_{\chi} t - i E_y \tau} p_{P}^{(3)}(t, r) \]

\[(\phi^{(n)} \phi^{(n-1)}, t) \]

\[(\phi^{(n)} \phi^{(n+1)}, t) \]

\[(\phi^{(n)} \phi^{(n+1)}, t) \]

\[(\phi^{(n)} \phi^{(n-1)}, t) \]

\[(\phi^{(n)} \phi^{(n-1)}, t) \]

\[(\phi^{(n)} \phi^{(n+1)}, t) \]

\[(\phi^{(n)} \phi^{(n-1)}, t) \]

Conclusion

Vibrational coherences in fixed electronic states can be identified if the Born-Oppenheimer approximation is valid. This is no longer possible in the case of strong non-adiabatic coupling.

References