A Simple Model For The Relaxation Dynamics in Perylene-Bisimide Dimers Excited by Femtosecond Laser Pulses

M. Keßl1, M. Fulge1, A. Schubert2, V. Sente1, F. Wüthner1, C. Meier1, R. F. Pick2,3, B. Lichtenberger4, B. Engel4 and V. Engel1

1Universität Würzburg, 2Université de Toulouse, 3Universität Tübingen, 4Universität Rostock

Motivation: Energy Transport

Organic semiconductors
• promising materials in organic solar cells
• low quantum yield because of inefficient exciton energy transport in the material
• quenching processes → "self-trapping"

Investigated system: perylene bisimide (PBI) [1]
• PBI forms π-aggregates
• laser-generated excitons localize on dimer units → PBI dimers used as model system

![Figure 1: Energy transport in PBI aggregates](image)

Spectra

Absorption spectrum [2]
• dimer model
• one effective mode per monomer

![Figure 2: Absorption and emission spectra](image)

Emission spectrum [3]
• broad, red shifted band
• description by additional torsional mode

![Figure 4: Potential curves as a function of the torsional angle](image)

Transient absorption spectroscopy:
• step function → ground state bleach
• exponential decay with \(t = 215 \text{ fs} \) → stimulated emission
• oscillatory term with a period of 381 fs → quantum beats

Main result:
• ultrafast de-population of the excited (bright) state on a timescale of 215 fs [4] → self-trapping, no effective energy transport
• pathway via torsional motion not accessible
• explanation: coupling to CT states

Excitation Scheme

![Figure 8: Potential \(V_{\text{ex}} \) of the electronic ground state and diabatic potentials \(V_{\text{dd}} \) of the excited states. The black arrows depict the excitation scheme.](image)

Dimer Model and Effective Coordinate

4 coupled excited states
• 2 neutral
• 2 exciton-transfer

One effective coordinate \(q \), PBI dimers at ground state geometry
• \(q = 0 \): two neutral structures
• \(q = 1 \): one cation, one anion
• near the Franck-Condon region the CT states have higher energy than the Frenkel states → deformation along \(q \) enables coupling to CT states

![Figure 5: The four localized excited dimer states, Black: Frenkel states, Red: CT states.](image)

Determination of the potentials

• adiabatic potentials along \(q \) quantum-chemically calculated
• nonadiabatic coupling elements unknown
• diabatization using CT characters of the adiabatic potentials → diabatic Potential curves \(V_{\text{dd}} \) with \(i = 1-4 \) and couplings \(J_{12}, J_{23}, J_{34} \)

![Figure 7: Left: Adiabatic potential curves and CT characters. Right: Diabatic states and couplings](image)

Stochastic Schrödinger Equation

The employed dissipation model neglects the stochastic nature of energy transfer between system and bath. Energy dissipation is correctly described by coupling the isolated quantum system to a thermal bath. This problem can be reduced to an equation of motion for the density matrix of the system (Lindblad equation). Going back to a wavefunction based representation leads to stochastic and dissipative terms in the time-dependent Schrödinger equation. In harmonic approximation this equation can be solved by different methods like stochas-tic Schrödinger equation formalism or Monte-Carlo wavefunction simulations.

Refined dissipation model: quantum state diffusion (QSD form)

Diabatic potentials \(V_{\text{dd}} \) approximately harmonic → stochastic Schrödinger equation for harmonic system

\[
dp{\rho}(t) = -\mathcal{H}\rho(t)\frac{\text{d}}{\text{d}t} + \sum_{\alpha} C_{\alpha}(\rho(t))\frac{\text{d}}{\text{d}t} + \gamma(\rho(t)) + \mathcal{D}(\rho(t))\, ,
\]

with

\[
C_{\alpha} = \frac{1}{2} \int d\omega \left[(\alpha_{\text{in}} - \alpha_{\text{out}}) + (\alpha_{\text{in}} - \alpha_{\text{out}})^{\circ}\right] |\omega| \mathcal{W}(t)
\]

\(\gamma \): dissipation constant
\(\mathcal{D}(\rho(t)) \): annihilation/creation operator
\(\mathcal{W}(t) \): stochastic Wigner increment

![Figure 11: Dynamics of the population \(P_{2}(t) \) of the excited bright state \(V_{\text{F}} \) for different dissipation constants \(\gamma = 1 \times 10^{-4} - 5 \times 10^{-7} \).](image)

References

Contact: martin.kessl@uni-wuerzburg.de

Acknowledgements: The project is financially supported by the DFG within the CRC 1221 and the FOR 1809.